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Abstract. The general expression for the momentum operatorP of parabose quantization
theory in the coordinatex-diagonal representation is derived from the Heisenberg equations of
motion. Based on this a new kind of deformed calculus is developed. By its application, the
eigenequation for a free parabosonic Hamiltonian in coordinate representation is solved and the
results correspond exactly to the well known ones in number representation.

1. Introduction

In the last few years there has been increasing interest in generalized statistics. The main
reason is their possible application to the theory of fractional quantum Hall effect [1] and
to anyon superconductivity [2]. Haldane fractional statistics [3], generalizing the Pauli
exclusion principle to any spatial dimension, has also attracted much attention. A large
class of generalizations is based on permutation group invariance, for example, parastatistics
[4] is the statistics of identical particles defined by the irreducible representations of the
permutation group characterized by the triangular Young tables. This parastatistics, carried
out at the level of the algebra of creation and annihilation operators, involves trilinear
commutation relations in place of the bilinear relations that characterize Bose and Fermi
systems. Even though there are no observed paraparticles in nature, the possibility exists
for unobserved particles which obey the parastatistics. Some developments in interacting
many-particle systems have also shown that the quasiparticles in such systems may exhibit
features far more exotic than those permitted to ordinary particles [5], and it appears quite
possible that parastatistics may be realized in condensed matter physics.

In seeking such applications of parastatistics, it is essential that one has a complete
knowledge of coordinate or momentum representation, besides number representation, for
ideal parasystems, because in ordinary quantum mechanics the coordinate or the momentum
representations are of central importance. On the other hand, deformations of standard
mathematical objects have also attracted a lot of attention recently [6]. The emergence of
deformed algebraic structures in the studies of several physical theories has aroused interest
leading to an extensive exploration of possible deformations of several well known models
of physical phenomena [7]. In particular, the quantum group representation theory and the
non-commutative space have been studied extensively and a covariant differential calculus
on the quantum hyperplane has been presented [8]. A few years ago, the canonical partition
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function for a non-trivial parasystem, a parasystem with order two, was derived [9], and the
corresponding results for any order were obtained only two years ago [10].

The aim of this paper is to construct the coordinate representation for a paraboson
system. The crucial point of our approach is deriving the most general expression for
the momentum operatorP in the coordinatex-diagonal representation according to the
paraquantization principle. In section 2 we deduce such an expression for the momentumP

starting from the Heisenberg equations of motion, which can be considered as a deformation
of ordinary momentum operators in coordinate representation. Based on the most general
expression ofP , a new kind of deformed calculus is developed in section 3. We solve the
eigenequation of free parabosonic Hamiltonian and obtain a whole spectrum of eigenvalues
and eigenfunctions in section 4. Using the deformed calculus developed in section 3, the
normalization constants of these eigenfunctions are easily derived. The relation to the
parabose number representation and some conclusions are also discussed in the last section.

2. The coordinate and the momentum operators

Green generalized the usual quantum statistics by postulating double commutation relations
among fields as alternative solutions of the Heisenberg equations of motion [4]. Taking
parabose relations in this discussion, the Heisenberg equations of motion are of the form

Ṗ = i[H,P ] = −x ẋ = i[H, x] = P (1)

where [, ] is a commutator of operators,x andP are the coordinate and the momentum
operators respectively, andH = 1/2(P 2 + x2). For the sake of simplicity, we have taken
x, P andH as dimensionless quantities and only dealt with a single parabose degree of
freedom case. In the following discussion, we take equation (1) as our basic commutation
relation.

Introducing a notationS = [x, P ] − i, from equation (1) we see that

{S, x} = 0 {S, P } = 0 (2)

where{, } is an anticommutator of operators. Equation (2) implies thatS2 commute with
both the operatorsx andP . Thus,S2 must be ac-number. Obviously,S = 0 is the normal
statistics case. Comparing with the well known Fock space structure for the parabosons [11],
we can find in factS2 = −(p− 1)2, wherep is the so-called order of paraquantization and
may take any non-negative real number. We can ask what is the most general expression for
the momentum operatorP in the coordinatex-diagonal representation? By thex-diagonal
representation, we mean

x|x ′〉 = x ′|x ′〉 〈x|x ′〉 = δ(x − x ′). (3)

In this x-diagonal representation,{S, x} = 0 leads to an equation

0= 〈x ′|{S, x}|x ′′〉 = (x ′ + x ′′)〈x ′|S|x ′′〉 (4)

which has an obvious solution, i.e.

〈x ′|S|x ′′〉 = ic(x ′)δ(x ′ + x ′′) (5)

where the functionc(x ′) satisfiesc∗(x ′) = c(−x ′), becauseS is an anti-Hermite operator.
We define a coordinate reflection operatorR in the coordinate representation, such that

R|x ′〉 = | − x ′〉 (6)
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which implies that〈x ′|R|x ′′〉 = δ(x ′ + x ′′). Comparing this relation with equation (5) and
noticing that〈x ′| and |x ′′〉 are arbitrary bra and ket eigenvectors of the coordinate operator
x in the coordinate representation, we can writeS as

S = ic(x)R (7)

which implies that{R, x} = 0. Now we can present the most general expression for the
momentum operatorP in the coordinate representation as

P = −i
d

dx
− i
c(x)

2x
(1− R) (8)

which will satisfy all the requirements onP . For example, by substituting equation (8) into
the commutator [x, P ] gives i+ S, as it should be. Then, by substituting equation (8)
into the anticommutator{S, P } = 0 will lead to the following equation (noticing
R(d/dx) = −(d/dx)R)

dc(x)

dx
+ c

2(x)

2x
− c(x)c(−x)

2x
= 0 (9)

which has a simple solution, i.e.c(x) = c, a real number. Since we know that
S2 = −(p− 1)2, we can simply takec = p− 1 in our following discussion. Therefore, the
momentum operatorP for a parabosonic system is of [12]†

P = −i
d

dx
− i
p − 1

2x
(1− R) (10)

which anticommutes withR. Obviously, whenp = 1, it reduces to the ordinary momentum
operator in coordinate representation.

3. A new kind of deformed calculus

From equation (10) we can define a new derivative operatorD which acts on functions
f (x) of the real variablex as

Df (x) ≡ D

Dx
f (x) = d

dx
f (x)+ p − 1

2x
(1− R)f (x) = df (x)+ p − 1

2x
(f (x)− f (−x))

(11)

where df = (d/dx)f . Equation (11) meansD acts on an even functionfe(−x) = fe(x) as
the ordinary derivativeDfe(x) = dfe(x), andD acting on an odd functionfo(−x) = −fo(x)

leads toDfo(x) = dfo(x)+((p−1)/x)fo(x). For thep = 1 case,D reduces to the ordinary
derivative operator d. In the realization of parabose algebra for a single degree of freedom
the pair (x,D) plays the same role as (x, d) in the case of realizations of the ordinary boson
algebras. For example, the parabose algebra for a single degree of freedom

[a, {a†, a}] = 2a [a, {a†, a†}] = 4a† [a, {a, a}] = 0 (12)

has the familiar realization

a = x +D√
2

a† = x −D√
2

(P = −iD). (13)

† Notice that equation (10) is different from Kamefuchi’s and the difference is crucial for defining the deformed
calculus described in the next section.
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Like the q-deformed calculus in which theq-analogue of the number system is defined by
[13] [n]q = ((qn − 1)/(q − 1)), such that whenq → 1, [n]q → n, in our present case, we
can introduce a new kind of deformed number system which is defined by

[n] = n+ p − 1

2
(1− (−1)n). (14)

Obviously, [2k] = 2k, [2k + 1] = 2k + p for any integerk, and whenp → 1, [n] → n.
The paraquatization orderp is referred to as a deformation parameter in the present case.
Generalization of the ordinary differential equation dxn = nxn−1 reads

Dxn = [n]xn−1 (15)

which reveals the effect of the deformed derivative operatorD defined by equation (11) on
the polynomials ofx. If we introduce a notationE(x) defined by

E(x) =
∞∑
n=0

xn

[n]!
[n]! = [n][n− 1] . . . [1] [0]! ≡ 1. (16)

We also have

DE(x) = E(x). (17)

Therefore,E(x) is a deformation of the ordinary exponential function ex in our case and it
will reduce to ex whenp→ 1. The operatorD defined by equation (11) acts on a product
of two functions of the real variablex, sayf (x) andg(x), and gives

D(fg) = (Df )g + Rf Dg + (f − Rf )g′ = f Dg + (Df )Rg + f ′(g − Rg) (18)

where f ′ stands for df/dx. When eitherf (x) or g(x) is an even function ofx, i.e.,
Rf (x) = f (x) or Rg(x) = g(x), equation (18) will give the corresponding Leibnitz rule in
the present deformed case

D(fg) = (Df )g + f Dg. (19)

Inversion of the deformed derivative formula (11) leads to new deformed integration
also. To see this, let us first write

Df (x) =
(

1+ p − 1

2x
(1− R) d−1

)
df (x) = F(x) (20)

here, the operation d−1 is taken to be the usual integration
∫

dx. Then, the definition of
the deformed integration in this case is obtained formally as follows

f (x) = D−1F(x) = d−1

(
1+ p − 1

2x
(1− R) d−1

)−1

F(x)

= d−1

(
1− p − 1

2x
(1−R) d−1+p − 1

2x
(1−R) d−1p − 1

2x
(1−R) d−1−· · ·

)
F(x)

=
∫

dxF(x)−
∫

dx
p − 1

2x
(1− R)

∫
dxF(x)

+
(∫

dx
p − 1

2x
(1− R)

)2 ∫
dxF(x)− · · ·

=
∞∑
n=0

(−1)n
(∫

dx
p − 1

2x
(1− R)

)n ∫
dxF(x) ≡

∫
DxF(x). (21)
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i.e.∫
DxF(x) =

∫
dxF(x)+

∞∑
n=1

(−1)n(p − 1)n
(∫

dx

x

)n ∫ dx

2
(F (x)+ F(−x)). (22)

In the limit p→ 1, (22) reduces to the usual integration. To check formula (22), let us take
F(x) = xn. Substituting it into equation (22), we have∫
Dx xn =

∫
dx xn−

∫
dx
p − 1

2x
(1−R)

∫
dx xn+

(∫
dx
p − 1

2x
(1−R)

)2 ∫
dx xn − · · ·

= xn+1

n+ 1
+ c − p − 1

2

1+ (−1)n

n+ 1

xn+1

n+ 1
+
(
p − 1

2

1+ (−1)n

n+ 1

)2
xn+1

n+ 1
− · · ·

=
∞∑
k=0

(−1)k
(
p − 1

2

1+ (−1)n

n+ 1

)k
xn+1

n+ 1
+ c = xn+1

[n+ 1]
+ c (23)

as it should be, wherec is an integration constant. Similarly, we have∫
DxE(x) = E(x)+ c. (24)

From the definition of equation (21), it is easily seen that ifF(x) is an odd function of
x, F(−x) = −F(x), its deformed integration will reduce to the ordinary integration, that
is,
∫
DxF(x) = ∫

dxF(x). Equation (21) gives us a formal definition for our deformed
integration in the sense of the indefinite integral. For the definite integral, we have∫ b

a

DxF(x) ≡
∫ b

a

dxF(x)−
∫ b

a

dx
p − 1

2x
(1− R)

∫ x

a

dxF(x)

+
∫ b

a

dx
p − 1

2x
(1− R)

∫ x

a

dx
p − 1

2x
(1− R)

∫ x

a

dxF(x)− · · ·

=
∫ b

a

dx
∞∑
n=0

(−1)n
(
p − 1

2x
(1− R)

∫ x

a

dx

)n
F (x). (25)

If either F(x) or G(x) is an even function ofx, we also have a formula of integration by
parts from equation (19)∫ b

a

Dx
DF

Dx
G = FG |ba −

∫ b

a

DxF
DG

Dx
. (26)

4. The eigenequation for free parabosonic system

In section 2 we deduced the expression for the momentum operatorP in coordinate
representation for a single paraboson case. Considering equation (17), we can easily find
that up to a normalization constant the eigenfunction of the operatorP in the coordinate
representation is

P8k(x) = ik8k(x) 8k(x) ∝ E(ikx). (27)

Next, let us solve the eigenequation for the free parabose HamiltonianH = 1/2(P 2+x2)

H9n(x) = εn9n(x). (28)

Substituting equation (10) into this equation we get(
d2

dx2
+ p − 1

x

d

dx
− p − 1

2x
− x2+ 2εn

)
9n(x) = −p − 1

2x
9n(−x). (29)
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As in the ordinary case, forx → ±∞, the function 9n(x) must have the form
9n(x) = exp(−x2/2). Thus, we can seek a solution in the form

9n(x) = vn(x) e−x
2/2. (30)

By substituting it into equation (29), we find that the equation for the functionvn(x) is of
the form

d2

dx2
vn(x)− 2x

d

dx
vn(x)+ p − 1

x

d

dx
vn(x)+

(
2εn − p − p − 1

2x2

)
vn(x) = −p − 1

2x2
vn(−x).

(31)

Again similarly to the ordinary harmonic oscillator case, in order that9n(x) should be finite
for x → ±∞, it is necessary that the solutionsvn should be polynomials of finite order in
x. Such solutions actually exist for each non-negative integern. To each such value ofn,
there corresponds a polynomial of ordern

vn(x) = (−1)n ex
2
Dn e−x

2
. (32)

In order to prove that thesevn(x) are solutions to equation (31), let us give a recursion
relation

Dn+1 e−x
2 + 2xDn e−x

2 + 2[n]Dn−1 e−x
2 = 0 (33)

which can be easily checked by mathematical induction. Thus, substitutingvn(x) given by
equation (32) into (31), we get

2εn + p − (p − 1)(1− (−1)n) = 2[n+ 1] (34)

which implies that the eigenvaluesεn are of

εn = n+ p
2
. (35)

In fact, the polynomialsvn(x) given by equation (32) may be considered as a
deformation of the normal Hermite polynomials and denoted as

H(p)
n (x) = vn(x) = (−1)n ex

2
Dn e−x

2
. (36)

We can write out the explicit form of the first few polynomials

H
(p)

0 (x) = 1 H
(p)

1 (x) = 2x H
(p)

2 (x) = 4x2− 2p

H
(p)

3 (x) = 8x3− 4(p + 2)x H
(p)

4 (x) = 16x4− 16(p + 2)x2+ 4p(p + 2) . . . . (37)

We also would like to point out that the generating function for the deformed Hermite
polynomials is

e−t
2
E(2tx) =

∞∑
n=0

tn

[n]!
H(p)
n (x) (38)

and

H(p)
n (x) = [n]!

[n/2]′∑
k=0

(−1)k(2x)n−2k

k![n− 2k]!
= (−1)n ex

2
Dn e−x

2
(39)

where [k]′, in the summation notation
∑

, stands for the largest integer smaller than or equal
to k.

Substituting equation (36) into equation (30), we find the eigenfunctions of equation (28)
as

9n(x) = Nn e−x
2/2H(p)

n (x) = Nn(−1)n ex
2/2Dn e−x

2
(40)
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where Nn are normalization constants. These eigenfunctions have been normalization
according to the deformed integration∫ ∞

−∞
Dx9n(x)9m(x) = δn,m. (41)

For example, the normalized constant of the ground-state function90(x) = N0 e−x
2/2 is

given by

N−2
0 = 2

∫ ∞
0
Dx e−x

2
. (42)

To determine other normalized constantsNn, we need a formula∫ ∞
−∞

Dx x2n e−x
2 = [1][3] . . . [2n− 1]

2n
N−2

0 (n > 0) (43)

which can be easily proved. In fact, using the formula of integration by parts equation (26)
and noticing that the functions e−x

2
andx2n are both even, we have∫ ∞

−∞
Dx x2n e−x

2 = 2

[2n+ 1]

∫ ∞
0
Dx

D x2n+1

Dx
e−x

2

= 2

[2n+ 1]
x2n+1 e−x

2

∣∣∣∣∞
0

− 2

[2n+ 1]

∫ ∞
0
Dx x2n+1 D

Dx
e−x

2

= 2

[2n+ 1]

∫ ∞
−∞

Dx x2(n+1) e−x
2

(44)

which means that∫ ∞
−∞

Dx x2n e−x
2 = [2n− 1]

2

∫ ∞
−∞

Dx x2(n−1) e−x
2

= [2n− 1][2n− 3]

22

∫ ∞
−∞

Dx x2(n−2) e−x
2 = · · ·

= [2n− 1][2n− 3] . . . [1]

2n

∫ ∞
−∞

Dx e−x
2

= [1][3] . . . [2n− 1]

2n
N−2

0 (45)

so equation (43) is proved. By virtue of this formula, we obtain

Nn = N0√
2n[n]!

. (46)

Obviously, whenp = 1, Nn coincides with 1/ 4
√
π
√

2nn!, the normalized constant of an
ordinary harmonic oscillator.

The relationship between the coordinate representation and the number representation
for a parabose system with a single degree of freedom is clear. For example, the
function 9n(x) obtained earlier is exactly the wavefunction of then-paraboson state in
the coordinate representation. Using the usual realization for the operatorsa† anda, as well
as equation (13), one can check that the ground-state function90(x) satisfies

a90(x) = 1√
2
(x +D)90(x) = 0 (47)

and

aa†90(x) = 1

2
(x +D)(x −D)90(x) = p90(x). (48)
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In conclusion, we construct the coordinate representation theory for the parabose system
with a single degree of freedom, which fills a gap in the paraquantization theories. In order
to carry out practical calculations on this parabose coordinate representation, we develop a
new kind of deformed calculus. Using the deformed calculus, we solve the eigenequation
of the free parabose Hamiltonian and obtain the eigenvalue and the normalization constant
for each eigenfunction, which corresponds exactly to the result in the well known number
representation. It is interesting to generalize the results obtained in this paper to a case with
more than one degree of freedom, and work on this is in progress.
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